

3. Video

https://youtu.be/h7tpR3YRvzM

Information Meeting 30 May @ Netherlands Embassy - Hydrogen Innovation Mission to the Netherlands, 1-5 October 2018

Break

Information Meeting 30 May @ Netherlands Embassy - Hydrogen Innovation Mission to the Netherlands, 1-5 October 2018

2

4. Use of hydrogen in mobility

Information Meeting 30 May @ Netherlands Embassy - Hydrogen Innovation Mission to the Netherlands, 1-5 October 2018

3


DEMAND GATHERING & DEMAND CREATION

Robert Dencher

H2 - #No Bubble Symposium 23rd May 2018

www.opwegmetwaterstof.nl

Hydrogen Refuelling Stations (HRS) in The Netherlands "Operational & Investment ready"

	Locatie	Exploitant	350/700 bar	Planning oplevering
1	Helmond	WaterstofNet	350/700	
2	Rotterdam Rhoon	Air Liquide	350/700	
3	Amsterdam	Shell	700	Q4 2019
4	Amsterdam Schiphol	Shell	700	Q4 2019
5	Arnhem	PitPoint	700	Q4 2018
6	Breda	PitPoint	350/700	Q2 2019
7	Delfzijl	PitPoint	350	
8	Den Haag	Kerkhof	700	Q4 2018
9	Pesse	Green Planet	700	Q4 2018
10	Rotterdam Airport	PitPoint	700	Q4 2019
11	Utrecht/Nieuwegein	PitPoint	700	Q4 2019

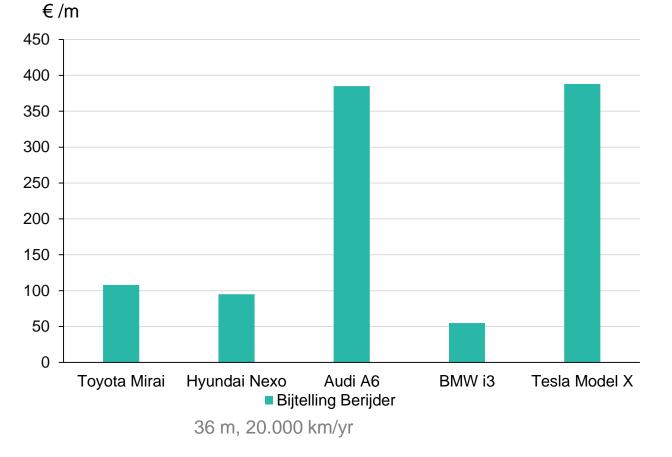
Hydrogen Refuelling Stations (HRS) in The Netherlands "Operational /Investment ready" & "Under Development"

	Locatie	Opera- tioneel	Exploitant	350/700 bar	Planning oplevering
1	Amsterdam	Nee	Shell	700	Q4 2019
2	Amsterdam Schiphol	Nee	Shell	700	Q4 2019
3	Arnhem	Nee	PitPoint	700	Q4 2018
4	Assen	Nee	Holthausen	350/700	Q1 2019
5	Breda	Nee	PitPoint	350/700	Q1 2019
6	Delfzijl	Ja	PitPoint	350	
7	Den Haag	Nee	Kerkhof	700	Q2 2018
8	Emmen	Nee	Holthausen	350/700	Q1 2019
9	Groningen	Nee	Holthausen	350/700	Q1 2019
10	Heerenveen	Nee	Green Planet	700	Q1 2019
11	Helmond	Ja	WaterstofNet	350/700	
12	Leeuwarden	Nee	Holthausen	350/700	Q1 2019
13	Meppel	Nee	Green Planet	700	Q1 2019
14	Oude Tonge	Nee	Greenpoint	350/700	?
15	Pesse	Nee	Green Planet	700	Q2 2018
16	Rotterdam Airport	Nee	PitPoint	700	Q4 2019
17	Rotterdam Rhoon	Ja	Air Liquide	350/700	
18	Utrecht/Nieuwegein	Nee	PitPoint	700	Q4 2019

2

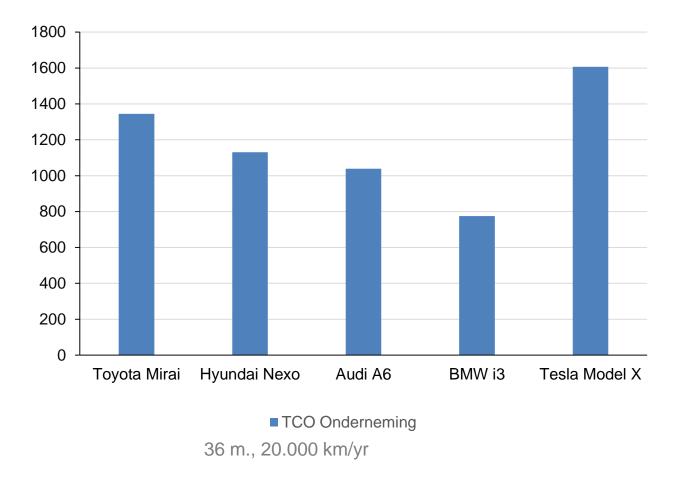
FCEV 's & HRS 2018-2030 – Medium Scenario

Vehicles HRS PV

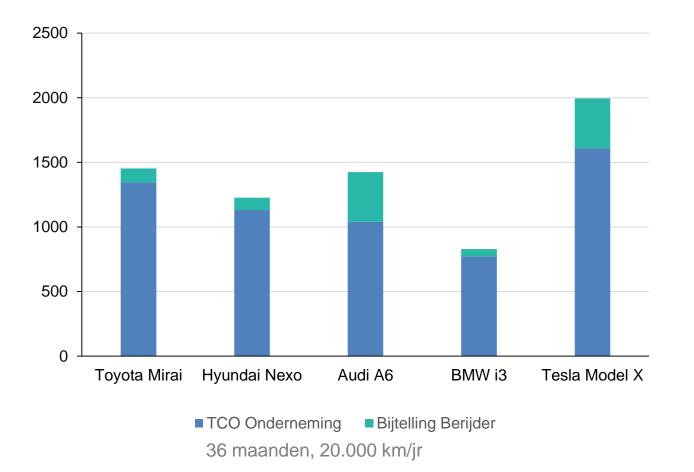

H2 Platform Klimaatakkoord input May 2018

	Market share Sales 2030	Total Accumulated 2030	HRS 2030	CAPEX subsidy 2019 t/m 2026	CO ₂ reduction	Cost /t CO ₂ avoided
Passenger cars	22%	300.000	92	€ 96,7 mio	2,9 Mton	€ 33,=
LCV	25%	65.000	54	€ 41,2 mio	0,97 Mton	€ 42,=
Trucks /HD	8%	7.700	45	€ 26,7 mio	0,7 Mton	€ 38,=
Buses	50%	1.700	25	€ 11 mio	0,3 Mton	€ 36,=
	SCENARIO MID	375.000	216	€ 175 miljoen	4,9 Mton	€ 36,=
	SCENARIO LOW	132.000	142	€ 90 miljoen	1,9 Mton	€ 47,=
	SCENARIO HIGH	696.000	432	€ 243 miljoen	9,6 Mton	€ 25,=

Govt. Subsidies end 2026, total Capex 2018-2030 € 725 mln +



"Demand Gathering" or "Demand Creation" Stimulating Zero Emission : The Lease Car – The Driver's Perspective



"Demand Gathering" of "Demand Creation" Stimulating Zero Emission : The Lease Car - The Fleetowner

"Demand Gathering" or "Demand Creation" Stimuleer Zero Emissie : de Berijder & Fleetowner

"Demand Gathering" & "Demand Creation"

"Create" Zero Emission Mobility → Align the financiale / fiscal incentives Fleetowner and Driver.

Several tool are being considered/proposed, incl.

- 1) increased taxes on fossile vehicles (EU Law w.e.f. Q1, 2019),
- 2) insurance/garantuee scheme for 2nd hand value t/m 2022 (2024?) and/or
- 3) first-buy support for first 8500 FCEV 's.

H2 Mobility 2018 – 2030 : Conclusions & Actions

Conclusions

- "Chicken-Egg" breakthrough ~20 HR 's in 2020
- Klimaatakkoord : Scenario's give direction:
 - HRS (200+ in 2030) and FCEV's (300k+)
 - Financial incentives for Drivers, Fleetowners and Leasecompanies need to be aligned.

Actions

Fleetowners, Lease-cie's, OEM 's and HRS 's need to align on ambitions required incentives.

5. Standardization, certification, testing

Information Meeting 30 May @ Netherlands Embassy - Hydrogen Innovation Mission to the Netherlands, 1-5 October 2018

Standardization, Testing and Certification for Hydrogen

Wolter Veenhoven, 30th May 2018

Trust Quality Progress

Presentation Outline

- Introduction
- H2 Non-Automotive Products and Components
- **H2** Automotive Products and Components
- **H2** Future "transition"

Introduction

The Netherlands

- □ Connected Buildings (A network of Gas pipelines).
- □ Efficient use of Resources
- □ Knowledge of Gaseous Fuels.

I KIWA

- □ Kiwa is a knowledge institute and an international quality authority, with basis in the Netherlands.
- □ Kiwa plays a major role in testing, certification and standardization in water, energy and gas sectors.
- □ KIWA's contributions to building, industry and the automotive and transportation markets are equally significant.
- □ KIWA cooperates with Testing, Inspection and Certification organizations, to offer 1 stop shop
- In Japan for example, KIWA is represented by Hastex, and cooperates with domestic certification bodies, such as: JIA, KHK.
- □ KIWA has 5000 employees.
- □ KIWA 's employees with expertise in H2. actively participate in H2 standardization committees.

Hydrogen: Non-Automotive Products and Components (1)

Standardization

□ Directives & Regulations adopted by EU Paliament:

-Gas Appliance Regulation (GAR) applicable for Appliances burning H2

-Essential Requirements: Risc assessment, Design Rule, compliance with "State of Art"

□ Examples of EN standards, used for H2 Appliances:

-EN 62282 series (stationary power systems)

-EN 50465 (combined heating power systems)

Certification & Inspection

□ GAR requires 3rd Party Conformity Assessment (Notified Body)

- -Type Approval
- -Audit of production and quality system
- □ KIWA cooperates with JIA for the Audits in Japan.
- □ CE Certificate

Hydrogen: Non-Automotive Products and Components (2)

Test Facilities

- □ KIWA is accredited for ISO/IEC 17025, 17020, 17065 (for wide scope of requirements)
- □ KIWA is CAB, in accordance with the IECEE "CB Scheme"
- □ Testing of performance and functionality of Fuel Cells , Electrical Safety , Electromagnetic Compatibility etc..in accordance with the applicable standards (and client specifications)
- □ Test Results of Domestic laboratories can be used if requirements are met

Consultancy

□ H2 Standardization Committees, Testing Proto Type, -Materials, H2 generation technology, cogeneration, blending of H2 in the gas grid, H2 combustion, electronic controls, etc.

References (Japan):

CE Certification of Enefarm, Material Evaluation (H2 Compatibility, Durability, Corrosion), H2
Cylinder (proto type testing). FC Components (proto type testing)

Hydrogen: Automotive Products and Components (1)

Standardization

- EC Dir 79/2009 (EU 406/2010), GTR13, UNECE (R134), KHK, ANSI HGV 3.1-2015, CSA/ANSI HGV 4.2-2013, ANSI HPRD 1-2013, ISO norms etc.
- □ KIWA is participating in various H2 standardization committees and working groups, among others:
 - ISO TC22SC41 Specific aspects for gaseous fuel (WG7 : all gaseous fuel systems. convener of the working group)
 - ISO TC197 Hydrogen technologies (WG5 Gaseous hydrogen land vehicle refueling connectors devices & WG18 Gaseous hydrogen land vehicle fuel tanks and TPRD's
 - GRSG (European regulation), H2 directive / regulation delegate on behalf of the Netherlands
 - CSA standard commission (north America), HGV3.1 and HPRD1
 - GTR#13 Informal Working Group on GTR13 (HFCV) Phase2. Member several taskforces like TF1 Heavy Duty Vehicles, TF3 Recommendations for test procedures

Hydrogen: Automotive Products and Components (2)

Certification & Inspection

- □ KIWA is accredited for ISO/IEC 17025, ISO/IEC 17065
- □ KIWA is Technical Service, for Vehicle Authorities of The Netherlands (RDW) and Germany (KBA).
 - -E1, E4 (Audits by KBA, resp.RDW),
- □ Notified Body for TPED (ADR)
- □ Japan: KHK, accepts the test results from KIWA
- □ USA: partnership with designated body for DOT,
- □ Canada/NA: ISO Certificates scope HGV 3.1
- □ China : partnerships with designated bodies

Test Facilities

- KIWA has large unique hydrogen lab (for real H2, high flow, high pressure H2 testing: > 6g/sec, 1050 Bar), EMC, Electric Safety-, endurance -, leakage-, extensive environmental -, performance -and functionality testing, hydrostatic testing ~ 5500 Bar
- □ KIWA accepts test results from domestic laboratories if laboratories comply with KIWA requirements

Hydrogen: Automotive Products and Components (3)

Consultancy

 FCV Standardization Committees, Proto Type Testing, Materials Testing, Electronic Controls, Development of Safety Systems (boil-of combustion (BMW)), Feasibility Studies, Demonstrations, etc.

References (Japan):

- □ H2 cylinder

 On Tank Valves, Valves, Regulators, Sensors, Receptacles, Fuel Lines, Couplings, Injection Systems, Controls, other components

Hydrogen Future "transition"

- Standardization:
 - □ Standards expanding rapidly
 - Connected driving, IoT

Certification & Inspection:

Expand Designations for Conformity Assessment

Test facilities:

Expand Facilities for Testing High Pressure, High Flow, etc.

Consultancy

 Feasibility - & Technical studies: performance, functionality, safety

References :

- □ Upgrading infrastructure to H₂
- □ Vehicle, marine, train, aerospace
- □ H2 appliances, H2 components, H₂ storage tanks, etc
- □ Fuel Cells
- □ Electrolysers and SMRs
- □ H₂ Storage Media
- □ H2 In power generation
- □ H2 re-fuelling stations

Opportunities Japan:

- Project related to Tokyo 2020
- Expand Cooperation with Authorities and Laboratories in Japan
- Expanding into other transportation related applications (demonstration bus, train, marine)
- □ H2 storage

Contact

- Hastex International kk
 - Wolter A. Veenhoven

Address

- 132 Takenomaru, Naka-ku,
- Vokohama 231-0847
- Japan

Contact

- Mobile: 090 30685523
- Tel.: 045-319-6155
- Fax: 045-319-6156
- <u>E-mail: hastex@tkc.att.ne.jp</u>
- Web-site: <u>https://www.kiwa.com/en/media/news/</u>

