

Introduction on NL biomass policy and possible smart approaches

Biomass Torrefaction and co-firing:

Experience and future perspectives from the Netherlands

Michiel Carbo

Tokyo 18 May 2016

www.ecn.nl

Dutch Energy Agreement for sustainable growth

- Broad support by industry, government, NGO's, unions, etc.
- Reduction in final energy consumption averaging 1.5% annually
- Increase energy generated from renewable sources to 14% in 2020 and 16% in 2023
- Create 15,000 full-time jobs
- Improve competitive position of Dutch companies
- Investment security and innovation support
- Decrease costs of energy for households (321 M€) and businesses (266 -331 M€)
- Substantial investments between 2013 and 2020: subsidies (13 18 billion euro), infrastructure costs, private investments
- Max. 25 PJ_e biomass co-firing per year (equivalent to 3.5 Mton white wood pellets), with 15% alternative streams

Dutch co-firing incentives (1)

- <2003: RBE \rightarrow tax credit on produced electricity
- 2003-2006: (OV)MEP
 - Project subsidy contracts per kWh (10 years)
- 2008-2010: SDE
 - Feed-in premium with competitive tendering between different renewable energy project proposals; without large scale biomass co-firing, only smaller than 50 MW

• 2010-now: SDE+

- Feed-in premium with competitive tendering between different renewable energy project proposals
- Proposals granted starting with cheapest cost price until total budget is allocated
- Large scale biomass co-firing included in 2015 for duration of 8 years
- Overall 2015 budget for all renewable energy subsidies: 3.5 billion euro
- No co-firing proposals granted in 2015 call

Dutch co-firing incentives (2)

- 2016 SDE+ budget 8 billion euro with two calls in March and October 2016
- March call:
 - 4 Phases based on maximum cost price level (Phase 1: < 0.09 €/kWh, Phase 2: <0.11 €/kWh, Phase 3: <0.13 €/kWh, Phase 4: <0.15 €/kWh)
 - 2 Co-firing proposals for existing plants in Phase 2
 (cost price: 0.107 €/kWh for max. 5839 full load equivalent hours per year, 8 years)
 - 2 Co-firing proposals for new plants in Phase 3
 (cost price: 11.4 €/kWh for max. 7000 full load equivalent hours per year, 8 years)
 - Total available budget: 4.0 billion euro
 - Requested budget: 8.15 billion euro
 - Phase 1: 2049 M€, Phase 2: 2774 M€, Phase 3: 2983 M€, Phase 4: 344 M€
- Likely 1 or 2 co-firing proposals in Phase 2 granted
- Provisional correction amount in 2016 (to be deducted from cost price):
 0.039 €/kWh → net premium 0.068 or 0.075 €/kWh (existing or new, resp.)

Biomass sustainability requirements

- Biomass use must lead to substantial reduction in GHG across value chain in comparison with fossil fuels (min. 70% reduction, max. 56 g CO_{2eq}/MJ)
- Soil quality must be maintained and where possible improved
- Production of raw biomass may not result in destruction of carbon sinks
- Use of biomass may not result in a long-term carbon debt
- Biomass production may not result in Indirect Land Use Change (ILUC)
- Several requirements for sustainable forest management
- Chain of Custody (CoC) must be in place that covers entire chain
- Certification system requirements

Co-firing experience in the Netherlands

Dutch lessons learned; your JPY earned?

- Fluctuations and uncertainties in support schemes do not contribute to continuous biomass co-firing in power plants
- Certainty warrants biomass co-firing by utilities
- Utilities applied for a feed-in premium of 0.068 €/kWh (or 8.5 JPY/kWh) for a total duration of 8 years and 5839 full load equivalent hours per year
- This suggests that biomass co-firing is commercially viable at this premium
- Japanese feed-in tariff of 24 JPY/kWh for 20 years duration offers a lot of certainty (you are living our dream)
- Co-firing of white wood pellets likely requires hardware modifications
- Co-firing of torrefied wood pellets is business-as-usual: simply substitute coal

The added value of torrefied pellets

- Torrefaction combined with densification enables energy-efficient upgrading of biomass into *commodity solid biofuels* with favourable properties in view of logistics and end-use
- Favourable properties include high energy density, better water resistance, slower biodegradation, good grindability, good "flowability", homogenised material properties
- Therefore, cost savings in handling and transport, advanced trading schemes (futures) possible, capex savings at end-user (e.g. outside storage, direct co-milling and co-feeding), higher co-firing percentages and enabling technology for gasification-based biofuels and biochemicals production
- Applicable to a wide range of lignocellulosic biomass feedstock and residual streams

Torrefied pellet properties in perspective

	Wood chips	Wood pellets	Torrefied wood pellets	Charcoal	Coal
Moisture content (wt%)	30 – 55	7 – 10	1-5	1 – 5	10 – 15
Calorific value (LHV, MJ/kg)	7 – 12	15 – 17	18 – 22	30 – 32	23 – 28
Volatile matter (wt% db)	75 – 84	75 – 84	55 – 80	10 – 12	15 – 30
Fixed carbon (wt% db)	16 – 25	16 – 25	22 – 35	85 – 87	50 – 55
Bulk density (kg/l)	0.20 - 0.30	0.55 – 0.65	0.65 – 0.80	0.18 - 0.24	0.80 - 0.85
Vol. energy density (GJ/m ³)	1.4 - 3.6	8-11	12 – 19	5.4 – 7.7	18 – 24
Hygroscopic properties	Hydrophilic	Hydrophilic	(Moderately) Hydrophobic	Hydrophobic	Hydrophobic
Biological degradation	Fast	Moderate	Slow	None	None
Milling requirements	Special	Special	Standard	Standard	Standard
Product consistency	Limited	High	High	High	High
Transport cost	High	Medium	Low	Medium	Low

<u>Abbreviations:</u> db = dry basis LVH =Lower Heating Value

sources: ECN (table, fig. 1, 3), Pixelio (fig. 2, 5), OFI (fig. 4)

ECN in co-firing and torrefaction

- 20+ years experience in biomass co-firing R&D, identified the potential of torrefaction and played a pioneering role in torrefaction development since 2002
- ECN's torrefaction technology proven on pilot-scale and demonstration scale; Andritz ready for market introduction
- ECN offers complete portfolio of risk mitigating tools/solutions that are tailored and validated for co-firing of white and torrefied pellets in pulverised coal fired power plants

ECN 50 kg/h torrefaction pilot-plant

Black pellets: Services and Technology

- Efficient biomass torrefaction technology with reliable product quality
- Technology to convert biomass with high moisture and/or ash content (grass, agricultural residues, etc.) into solid bioenergy carriers: TORWASH
- Lab- and pilot-scale torrefaction and densification equipment to assess feedstock behavior and produce test batches
- Know-how and infrastructure to test black pellet behavior during logistics, storage, handling and conversion (validated against industrial operations)

NUON/Vattenfall Buggenum experience*

DONG Studstrup-3 experience

- Two units with total capacity of 714 MW_e and 986 MW_{th}
- Dedicated milling on MPS roller mill adapted for either coal or white pellets
- 200 tons of Andritz/ECN torrefied spruce pellets during 8 hours trial in March 2014
- Co-firing share: 33 wt%; 100% on one mill
- Observations:
 - No dust formation during unloading
 - High durability; no issues with dust formation in chain conveyors
 - Normal Minimum Ignition Energy (MIE) → no additional explosivity risks compared with white wood pellets
- ECN conducted lab-scale characterisation of pellets

DONG Studstrup-3 experience

Thank you for your attention

Michiel Carbo Innovation Manager Biomass Upgrading Biomass & Energy Efficiency

T +31 88 515 47 92 Westerduinweg 3, 1755 LE PETTEN P.O. Box 1, 1755 ZG PETTEN The Netherlands

<u>carbo@ecn.n</u>

www.ecn.nl